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Lentils (Lens culinaris Medik.) are one of the important pulse crops in the world, because 

of their nutritional quality. They are rich sources of carbohydrates, proteins, iron, dietary 

fibres, vitamins, minerals and high energetic value. Unfortunately, the acceptability of 

lentils as staple food is limited, due to presence of various antinutritional factors. One of 

them is phytic acid (myo-inositol hexakisdihydrogen phosphate), which forms complexes 

with other nutrients, such as metallic ions (Ca, Mg, Fe, Cu etc.), amino acids, proteins, 

lipids and vitamins, rendering them unavailable to plants via lowering their solubility and 

bioavailability. The phytic acid (PA) can only be degraded by the enzyme, phytases (myo-

inositol hexakisphosphate phosphohydrolase enzyme), which break it into to myo-inositol 

and phosphoric acid. The present study gives information about PA, Iron (Fe) and protein 

present in lentils. It also elaborates isolation, characterization and optimization of phytase 

producing PA degrading bacteria. Wet food processing methods (soaking, germination and 

fermentation) were employed to minimise the inhibitory effect of PA, as well asto increase 

Fe and protein in samples. The contents of PA (Wade Method), iron (Bathophenathroline 

method) and protein (Bradford’s method)were estimated by their respective standard 

curves, using double beam UV/VIS spectrophotometer (Systronic, 119) at 500 nm, 535 nm, 

595 nm, respectively. Among all the wet processes, fermentation supported best for 

degrading PA (62.35 %) at 72 h than 48 h and 24 h. At this fermentative stage of 72 h, as a 

result of PA degradation, maximum increment of Fe (245%) and protein (42%) were 

observed. A total of 11 PPB (AUPPB01-AUPPB011) were isolated from fermented lentil 

sample and screened out. Among them AUPPB02 exhibited a halozone of 19 mm, having 

89.47% hydrolysis efficiency and 1.68 U/ml of enzyme producing capacity. On the basis of 

morphological, physiological and genotypical characteristics, the isolate was identified as 

Bacillus amyloliquefaciens AUPPB02 (Accession no.- OR187307). The optimized 

conditions for phytase production were 48h of incubation time, 5.0 pH, 37 °C temperature, 

1% inoculum size, 1% of lactose as carbon and 1% of peptone as nitrogen source. The 

strain showed increment of 21.33% phytase production in optimised media (1.76± 0.10 

U/ml) than in pre-optimised media (1.45±0.12 U/ml). 
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Introduction 
 

Being an essential macronutrient, phosphorous (P) is less 

abundant (0.1% of total) in the Earth’s crust. It is utilized 

by plants through various metabolic processes, such as 

photosynthesis, respiration and cell division (Karpagam 

and Nagalakshmi, 2014; Motamedi, 2016). The 

concentration of P, present in soil is totally dependent 

upon the content of its original source. While, 

considering the total P in soil, organic P accounts for 

approximately 30-65% and on the other hand inorganic P 

constitutes for approximately 30-75% (Rizwanuddin et 

al., 2023). One of the most prevalent organic forms of P 

present in soil is Phytic acid (PA) or phytate and is 

chemically named as myo-inositol hexakisdihydrogen 

phosphate (Dahiya, 2016). This primary source of 

inositol is present in a lot of cereals (wheat, barley, rice, 

maize, etc.), legumes (soyabean, lentils, pulses, etc.) and 

nuts in the form of minerals as well as storage (Mittal et 

al., 2011; Kim et al., 2015; Baruah et al., 2017). Despite, 

its presence in soil and seeds of various crops, it remains 

in unavailable form for plants (Lazali et al., 2013; Mittal 

et al., 2012; Shivange et al., 2012), because of its 

complexity. This compound has strong binding capacity 

to mono or divalent cations in soil (Cerino Badone et al., 

2012). Due to its unusual molecular structure, it can also 

form complexes with other nutrients, such as metallic 

ions (Ca, Mg, Fe, Cu etc.), amino acids, proteins, lipids 

and vitamins (Selle et al., 2012; Shim and Oh, 2012), 

rendering them unavailable to plants via lowering their 

solubility and bioavailability. This limits the absorption 

of these nutrients in them (Savita et al., 2017; 

Rizwanuddin et al., 2023).  

 

Normally, chemical and physical methods are used to 

degrade PA, which in turn reduce the nutritive value of 

food and feed products (Olika et al., 2019). Thus, to 

overcome the said problem, alternative biological food 

processing and preparation techniques, such as 

fermentation, sprouting and soaking, along with the 

exogenous enzymes are used (Sharma and Shukla, 2020; 

Suri and Tanumihardjo, 2016; Palacios et al., 2008).  

 

Moreover, various studies have shown that the fermented 

products facilitate the bioavailability of minerals by 

reducing the PA content (Nionelli et al., 2018; Yildirim 

and Arici, 2019). These PA can only be degraded by 

phytases (myo-inositol hexakisphosphate 

phosphohydrolase enzyme), which catalyze the 

breakdown of PA to myo-inositol and phosphoric acid in 

a stepwise manner. 

Phytase can be categorised into two main classes, (i) 

location of dephosphorylation on the inositol ring and (ii) 

the catalytic mechanism (Ghorbani Nasrabadi et al., 

2018; Greiner et al., 2007; Mullaney and Ullah, 2003). 

The first class of phytase, which is present on the 

location of dephosphorylation on the inositol ring, are 

types of (a) 3-phytase (EC 3.1.3.8), produced primarily 

by microbes; (b) 4/6-phytase (EC 3.1.3.26) by plants; and 

(c) 5-phytase (EC 3.1.3.72) by many legumes, such as 

Pisum sativum, Phaseolus vulgaris and Medicago sativa 

(Bhavsar and Khire, 2014; Greiner and Carlsson, 2006). 

The second class of phytase enzymes, which are based on 

the catalytic mechanism are also classified into (a) acidic 

(EC 3.1.3.2) and (b) alkaline (EC 3.1.3.8) types. Acidic 

phytases include histidine acid phosphatase, cysteine acid 

phosphatase and purple acid phosphatase while, alkaline 

phytase comprises β-propeller phytase. Phy A-3-phytase, 

Phy B-3-phytase, Phy C-6-phytase belong to a subclass 

of histidine acid phosphatase, while Phy D-3-phytase is 

subclass of β-propeller phytase, produced by Bacillus sp. 

(Mullaney and Ullah, 2003; Nagar, 2021). 

 

Due to wide range of actions, high activity, economic 

benefits at various scales and quick production 

turnaround times, microbial phytases have developed 

keen interest of researchers over the time. According to 

Dahiya (2016), phytase is known to enhance bone health 

in animals, decrease mineral deficiencies, decrease 

nonutilized PA and boost mineral absorption and 

bioavailability. The use of microbial phytase can be an 

innovative approach that orchestrate the path of food 

safety, through balancing antinutritional factors.  

 

Phytases have been found in various microorganisms, 

such as Aspergillus fumigatus (Vasudevan et al., 2017), 

Enterobacter sp.4 (Vasudevan et al., 2019), Bacillus 

amyloliquefaciens (Selle and Ravindran, 2007), 

Lactobacillus sanfranciscensis (Raghavendra and 

Halami, 2009), Bacillus sp. (Choi et al., 2001) and 

others. 

 

The phytase-producing bacteria have been isolated from 

many terrestrial and aquatic habitats, but less information 

is available about their occurrence from fermented food, 

which is the natural habitat of diverse microbial 

community. This study includes about impact of various 

food processing methods on PA, iron (Fe) and protein 

contents, as well as the isolation and characterization of 

potent phytase producing bacterial (PPB), under 

optimised conditions. 
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Materials and Methods 
 

Chemicals 
 

All the chemicals used in the present investigation were 

of analytical grade and were purchased from Sigma, 

Merck, HiMedia and SRL India. 

 

Seed sampling and processing 
 

Seed sample of Lentil (Lens culinaris Medik.) was 

procured from farmyard of Patna, Bihar. It was pre-

processed for the isolation and assessment of its 

nutritional properties through various wet methods. The 

wet processing methods: i) soaking, ii) germination and 

iii) fermentation were used to study their impacts on PA, 

Fe and protein contents in the selected samples. All the 

experiments were done in triplicates. During soaking, 

100 g of seeds were cleaned, washed and soaked in 

500ml of sterile double distilled water (DDW) at (~25°C) 

for 24h under ambient laboratory conditions. At the end 

of period, the water was drained, soak dried on blotting 

paper and crushed in mortar and pestle. In germination 

process, the soaked seeds (24 h) were allowed to 

germinate in wet muslin cloth for 72 h and were 

sprinkled with sterile DDW every day. The seeds with 

radicle were picked up, soak dried on blotting paper and 

crushed. For fermentation method, dry seeds were 

grounded to powder and mixed with sterile DDW (1:5 

w/v) left to ferment in 250 ml conical flasks separately, 

for 24 h, 48 h and 72 h at 30±2°C in shaker cum 

incubator (Rivotek). 

 

Quantitative estimation of PA, Fe and protein 
 

Effect of different wet processes on the sample along 

with the control (dry raw seeds) were analysed by 

estimating their PA, Fe and protein contents 

quantitatively, using double beam UV/VIS 

spectrophotometer (Systronics, 119). PA estimation was 

carried out by Wade method (Latta and Eskin, 1980) at 

500nm and the concentration was calculated through 

extrapolating the value on standard curve of sodium 

phytate. Fe estimation was carried out by modified 

bathophenathroline method (Cowart et al., 1993), 

measuring only the non-haem-iron at 535 nm. The Fe 

concentration was calculated with reference to the 

standard curve of Mohr’s salt. Protein estimation was 

carried out by Bradfords method (Bradford, 1996) at 595 

nm. The protein concentration was calculated with 

reference to the standard curve of BSA. Among all the 

wet processing methods, the fermentation was more 

supportive for microbial growth and thus selected for 

isolation. 

 

Isolation of phytase producing bacteria (PPB) 
 

For isolation of bacteria, 5 g of powdered samples were 

weighed and mixed with 20 ml sterile DDW in conical 

flasks (n=3) and were allowed for fermentation at 

30±2°C for 24 h, 48 h and 72 h in shaker cum incubator. 

To continue with isolation, 1ml of fermented sample was 

added in 9ml of physiological saline (0.85%) solution, 

vortexed vigorously and serially diluted (10
-1

 to10
-7

). The 

aliquots (0.1 ml) of each dilution were spread on nutrient 

agar (NA) plate and incubated at 30±2°C for 72 h under 

regular observation. After incubation, colonies showing 

different morphology (variations in shape, colour and 

regularity) were picked up and further sub-cultured on 

same media to get pure isolates and were maintained at 

4°C for further studies (Aneja, 2018). 

 

Screening of phytase producing bacteria 
 

Qualitative screening for phytase production by bacterial 

isolates were carried out through streaking on phytase 

screening medium (PSM), containing 15 gl
-1

 Glucose, 5.0 

gl
-1

 NH4 NO3, 0.5 g
l-
1KCl, 0.5 gl-1 MgSO4. 7H2O, 0.01 

gl
-1

FeSO4.7H2O, 0.01 gl
-1

MnSO4.7H2O, 0.3 % Ca-

PA,20.0 gl
-1

agar; pH 5.5 and incubated at 30±2°C for 24-

72 h. Bacterial colonies showing zone of hydrolysis on 

solid plates, indicated for positive phytase activity 

(Mussa et al., 2023). Those PPB were again qualitatively 

confirmed on PSM plates by counterstaining with 2% 

cobalt chloride solution for 5 min, followed by addition 

of equal volumes of aqueous ammonium molybdate 

(6.25% w/v) and ammonium vanadate (0.42% w/v) 

solution. PPB was identified by the presence of a clear 

halo zone around the colony (Bae et al., 1999). The 

positive isolates were stored at 4°C on Luria- Bertani 

(LB) slants (10 g
l-
1tryptone, 5 g

l-
1yeast extract, 10 gl

-1
 

NaCl, pH 7.0) for further studies. 

 

Preparation of bacterial inoculum 
 

The LB broth medium (10 ml) was inoculated with 

bacterial isolate, incubated overnight in a shaker cum 

incubator (200 rpm) at 30±2°C. 2ml of the bacterial 

culture having OD600 of 0.1 (1 x 10
8
 CFUml

-1
) was 

centrifuged at 10,000 rpm. The cell pellet was transferred 
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into 250 ml flask containing 100 ml of MRS (2.0% 

glucose, 0.075 % sodium phytate, 0.2 % (NH4)2SO4, 1.75 

% of calcium chloride (1M), 0.5 % beef extract, 0.5 % 

sodium acetate, 0.2 % tri ammonium citrate, 2 % 

MgSO4.7H2O (100 mM), 0.5% MnSO4 (10 mM) 0.65 

KCl (1 M) 0.1% Tween 80, pH 5.5) and incubated at 

30±2°C and 200 rpm for 48 h. Now the incubated sample 

(10 ml) was centrifuged for 15 min at 1400 rpm, pellet 

was washed twice with 0.1 M acetate buffer (pH 5.5) and 

suspended in 0.2 M acetate buffer (pH 4.5-6.3) for 

estimation of phytase activity. 

 

Phytase assay 
 

For the assay of phytase activity, the bacterial suspension 

(0.1 ml) from above section was added with 0.9 ml 

substrate (2 mM sodium phytate in 0.2 M acetate buffer) 

and incubated at 35°C for 60 min. After the completion 

of incubation period, the reaction was stopped by adding 

1ml of (10%) aqueous trichloroacetic acid (TCA). The 

liberated orthophosphate was measured by a modified 

ammonium molybdate method (Heinonen and Lahti, 

1981). This method was chosen, since it uses the direct 

detection of the yellow phosphomolybdic acid, without 

reduction to molybdenum blue. 0.5 ml assay mixture 

(cell suspension + substrate + trichloroacetic acid) was 

mixed with 4ml of freshly prepared stop solution of 

(acetone:5 N H2SO4:10 mM ammonium molybdate in the 

ratio of 2:1:1 (v/v)) and vortexed. Further, 0.4 ml citric 

acid (1 M) was added to the assay mixture, which 

complexes with excess molybdate. Any cloudiness was 

removed by centrifugation and absorbance was taken at 

355 nm.  

 

The assay mixture of blank contained 0.1 ml buffer (0.2 

M acetate buffer), substrate and TCA. In order to 

calculate the enzyme activity, a calibration curve was 

drawn over the range of 100-1500 µg/ml orthophosphate. 

Enzyme activity was expressed in international units (U). 

One unit of the enzyme activity was defined as the 

amount of the enzyme, able to hydrolyse PA resulting in 

liberation of 1 µmol of inorganic phosphorus per min per 

ml under the assay condition. 

 

Phenotypic characterization of isolate 
 

The selected isolate was morphologically, 

physiologically and biochemically characterized. For 

morphological characterization, colony morphology, 

Gram-staining, endospore-forming ability, motility, etc. 

were studied. Temperature (20, 30, 40, 50, 60, 70°C), pH 

(3, 4, 5, 6, 7, 8 and 9) and NaCl (0.5, 1.5, 2.5, 3.5, 4.5, 

5.5, 6.5, 7.5 % w/v) tolerance assay contributed the 

physiological tests. Biochemical tests were conducted by 

referring the Bergey’s manual of Determinative 

Bacteriology (9th ed., 1993). It included tests of methyl 

red, Voges Proskauer, citrate utilization, catalase, 

oxidase, urease, nitrate reduction, starch hydrolysis, 

gelatin hydrolysis, H2S production and carbohydrate 

fermentation.  

 

Molecular characterization of isolates 
 

16S rDNA sequencing 
 

The bacterial isolate was further characterized by 16S 

rDNA gene sequencing. Genomic DNA from the selected 

PPB was isolated. The amplification of 16 S rRNA gene 

was carried out by using 50µl reaction mixture, 

containing 2.5 mM each of four dNTP (4µl), 10X Taq 

DNA polymerase assay buffer (10µl), 3U/ml 

Taqpolymerase enzyme (1µl), template DNA (1µl) and 

2µl each primer of forward (16s F: 

GGATGAGCCCGCGGCCTA) and reverse (16s R: 

CGGTGTGTACAAGGCCCGG) oligonucleotide, along 

with millipore water (30µl). The amplification was set as 

initial denaturation at 94 °C for 3min followed by 

30cycles of denaturation (94 °C for 1min), annealing (50 

°C for 1min) and extension (72 °C for 2min). The final 

extension was at 72 °C for 7min. The sequencing was 

performed according to manufacturer’s protocol using 

Big Dye Terminator Cycle Sequencing Kit (v3.1, 

Applied Biosystem) and analysed in an applied 

biosystems analyzer. Sequenced data were aligned and 

analysed to find the closest homolog of the isolates using 

the BLAST search tool (http://www.ncbi.nlm.nih.gov). A 

phylogenetic tree was made in MEGA 11 software using 

the Neighbor-joining method with Bootstrap analysis to 

obtain information on their molecular phylogeny. The 

partial 16S rDNA sequence of isolate has been deposited 

in the NCBI Genbank database to obtain the accession 

number. 
 

Optimization of culture condition for phytase 

production 
 

Various parameters viz., incubation period, temperature, 

pH, inoculum density, carbon (C) and nitrogen (N) 

sources were investigated for optimum phytase 

production. Optimization was done with one variable at a 

time. First of all, the effect of different incubation times 

(24, 48, 72 and 96 h) was studied in MRS media at 30±2 

http://www.ncbi.nlm.nih.gov/


Int.J.Curr.Microbiol.App.Sci (2024) 13(04): xx-xx 

49 

 

°C. Thereafter, effect of various temperatures (20, 25, 30, 

37 and 42°C) and pH of MRS media (2, 2.5, 3, 3.5, 4, 

4.5, 5 and 5.5) were studied. Effect of inoculum density 

varying from 0.1 to 5% in the growth media was also 

optimised. The study about impact of different C-sources 

by replacing mannose to glucose, fructose, maltose, 

sucrose, lactose, starch, carboxy methyl cellulose (CMC), 

xylan, wheat bran and sugarcane bagasse were also done. 

Similarly, the effect of N-sources was studied by 

replacing (NH4)2SO4 to peptone, yeast extract, beef 

extract, sodium nitrate, urea and malt extract. Along with 

above studies, the optimization of C and N 

concentrations were also carried on for optimum phytase 

production.  

 

Statistical analysis  
 

The data obtained were statistically analysed by MS-

Excel 2019 and GraphPad Prism 8 software, graphically 

represented as the mean±standard deviation (n=3). 

 

Results and Discussion 
 

Estimation of PA, Fe and protein in collected 

lentil seed sample 
 

Concentration of PA was calculated by standard curve of 

sodium phytate (R
2
=0.9953). Fe was estimated by the 

standard curve of Mohr’s salt (R
2
=0.9937) and protein by 

BSA (R
2
=0.9944). 

 

During different processing methods, levels of Fe content 

and protein were gradually increased but at same time, 

there was decrease in PA level. The maximum decline of 

PA was observed under fermentation of 72 h (62.35 %) 

followed by 48 h (53.93 %), 24 h (43.61 %), germination 

(20.93 %) and soaking (13.56 %). On the contrary, there 

was increment of Fe and protein contents in fermentation 

at 72 h (242.85%, 45.32%), which lagged behind by 

fermentation of 48h (165.04 %, 35.98 %), 24 h (93.31 %, 

26.25 %), germination (69.60 %, 14.18 %) and soaking 

(26.44 %, 7.12%), respectively when compared with 

control i.e., raw seeds (Table 1). 

 

It could be due to microbial activities, which played a 

great role in improving nutritional quality by degrading 

anti-nutritional component like, PA. This also concluded 

that PA was negatively correlated with Fe and protein. 

Such result was also supported by early research of 

Kumari et al., (2020), who concluded that soaking and 

germination increased the amount of iron and protein, 

while fermentation maximised them and negatively 

correlated with PA in lentil. The pH of the fermented 

lentil was found to be 6.4 in control, which decreased to 

reach the pH of 5.0 after the fermentation of 24 h, 

followed by 4.5 at 48 h and 4.3 at 72 h. This is due to 

production of microbial acid, which resulted the 

decrement of pH during fermentation. 

 

Isolation of phytase producing bacteria 
 

In the present work, total of twenty-five bacterial 

colonies, corresponding to 24 h (08), 48 h (08) and 72 h 

(09), which appeared on NA plates were picked up for 

phytase activity. 

 

Screening of bacterial isolates for phytase activity 
 

Qualitatively, screening of PA degrading bacteria was 

carried out on PSM by single line streak technique. 

Among 25 isolates, eleven showed, a diameter of 8 to 22 

mm clear halo zone, around their colony. Those phytase 

positive bacterial isolates were designated as AUPPB01- 

AUPPB11. One of the isolates, designated as AUPPB02 

exhibited considerable halo zone of 19mm on PSM plate 

(Fig. 3b) was selected for further study. 

 

Phenotypic characterization of isolate 
 

The isolate AUPPB02 appeared as small, having 

irregular margin, lobate, creamy mucoid whitish colony 

(Fig. 3a). The microscopic observations revealed it as 

Gram positive, motile, rods, arranged singly, having 

ellipsoidal sub terminal endospore. The physiological 

observations of the isolate, revealed its tolerance towards 

temperature upto20 to 60 °C, pH upto 3 to 7 and salinity 

upto 0.5 to 6.5 % (w/v). Various biochemical tests, 

pertaining to the isolate’s carbohydrate utilization have 

been listed in the Table 3 as positive or negative results. 

On the basis of morphological, various physiological and 

biochemical tests, the isolate AUPPB02 was identified as 

Bacillus sp., following the Bergey’s manual of 

Determinative Bacteriology (9th ed., 1993). 

 

Genotypic characterization of isolate  
 

Genotypic characterization of the isolate (AUPPB02) 

was done by 16S rDNA gene sequencing. Such analysis 

showed its 99.63% homology with the type strain 

Bacillus amyloliquefaciens in the database. On the basis 
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of homology, a phylogenetic tree was drawn, which 

identified the isolate as Bacillus amyloliquefaciens 

AUPPB02. The aligned partial sequence data (1347 bp) 

shown in Fig. 3 has been deposited in Genbank of NCBI 

with the accession number OR187307. The sequenced 

analysis of Bacillus amyloliquefaciens AUPPB02 

revealed its close relationship with B. amyloliquefaciens 

strain NBRC 15535; Class: Bacilli, Order: Bacillales, 

Family: Bacillaceae. 

 

Optimization of culture condition for phytase 

production  
 

The optimum incubation period for phytase production 

by B. amyloliquefaciens AUPPB02 was 48 h. It was 

initiated at 24 h (0.25 ± 0.02 U/ml), maximised at 48 h 

(1.56 ± 0.43 U/ml), followed by decline upto after 72 h 

(1.15 ± 0.79 U/ml) of incubation period (Fig.6).  

 

Such trend of result was also observed by Olajuyigbe 

(2016) in B. amyloliquefaciens PFB-02. In his strain, the 

phytase production was initiated slowly from 12 h of 

cultivation, reached maximum at 48 h and drastically 

declined thereafter. 

 

There was a minor level of increase in phytase 

production upto 30 °C, which reached to its optimum 

production level at 37 ˚C, followed by steep decline at 42 
°C (Fig. 7), depicting the optimum temperature of 37 ˚C 
for phytase production (1.65 ± 0.36 U/ml). In the same 

manner, Olajuyigbe (2016) also reported in B. 

amyloliquefaciens PFB-02, which grew maximally upto 

40 °C with drastic decline after and above that 

temperature (40 °C), where maximum phytase was 

produced at the temperature range of 30-40 °C. Similar 

optimum temperature was also reported by an earlier 

worker, Kerovuo et al., (1998), who studied on B. subtilis 

and achieved the highest yield of phytase at 37 °C.  

 

Phytase production was initiated from pH 2 with gradual 

increment over a broad range of 5.5, being optimum at 

pH 5 (1.65± 0.31 U/ml). There was decrease in phytase 

content, as well as in bacterial growth, when pH goes 

above the optimum level (Fig. 8).  

 

Work of Olajuyigbe (2016) supported our result that B. 

amyloliquefaciens PFB-02, also can grow maximally 

over a narrow pH range of 4.0 to 6.0 with highest growth 

at pH 5.0. Gulati et al., (2006) also reported similar 

optimum pH of 5.5 for phytase yield of 1.80 U/ml from 

Bacillus laevolacticus. On the contrary, optimum phytase 

production from Bacillus sp. at alkaline pH values of 7.5 

and 8.0 were reported by Demirkan et al., (2014) and Fu 

et al., (2011), respectively. Such results reflect that if 

there is any decrease or increase in optimum pH level of 

any microorganism, it results poor microbial growth, 

leading to the reduction in level of metabolites. 

 

Phytase production was initiated at the inoculum density 

of 0.1%, which ranged broadly with a density of 2.0%. 

Within the range of 0.1%-2.0% (Fig. 9) the optimum 

inoculum density was obtained as 1% with enzyme 

activity of 1.64 ± 0.47U/ml at 48 h.  

 

There was decrease in phytase content, as well as in 

bacterial growth, when inoculum density goes beyond the 

optimum level. This may be due to increased competition 

among the bacterial population for nutrient uptake and 

creation of nutrient imbalance. In the like manner, 

Trivedi et al., (2017) reported maximum phytase 

production in B. subtilis P6, at the inoculum density of 

2.5% (v/v) and incubation period of 20 h. 

 

Different C sources, used in growth media, worked 

differently, as far as their support in phytase production 

is concerned. Maximum phytase was produced by using 

lactose (1.59 ± 0.65 U/ml), followed by maltose (1.55 ± 

0.43 U/ml), fructose (0.9 ± 0.19 U/ml), starch (0.83 

±0.08 U/ml), CMC (0.74 ± 0.07 U/ml) and xylan (0.63 ± 

0.34 U/ml).  

 

The two agricultural wastes i.e., wheat bran (0.66 ± 0.28 

U/ml) and sugarcane bagasse (0.3 ± 0.06 U/ml) also 

assisted positively in phytase production (Fig.10). Report 

of Olajuyigbe (2016), stated about positive role of wheat 

bran as C source, for phytase production in B. 

amyloliquefaciens PFB-02. While working on Bacillus 

sp., Demirkan et al., (2014) found lactose as best carbon 

source among other used. 

 

Among all the studied C sources, lactose was best 

supporter (1.59 ± 0.65 U/ml) and thus its optimised 

concentration in media was found as 1%, to produce 1.63 

± 0.96 U/ml phytase enzyme.  

 

With gradual increase of lactose source in media from 

0.25% to 1%, there was an enhanced phytase production, 

but by increasing the concentration to 1.5% there was a 

decline in phytase production, as well as in bacterial 

population (Fig. 11). 
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Table.1 Amount of PA, Fe and Protein in collected seed sample 
 

Sl. No. Processing Methods PA 

(mg/100gm) 

(p≤ 0.005) 

Fe 

(mg/100gm) 

(p≤ 0.005) 

Protein 

(mg/gm) 

(p≤ 0.005) 
1.   Raw   63.19±1.3 3.29±0.29 43.77±0.426 

2.  Soaking  54.62±0.03 4.16±0.02 46.89±0.874 

3.  Germination  49.96±0.13 5.58±0.43 49.98±0.746 

4.  Fermented (24h)  35.63±0.98 6.36±0.76 55.26±0.808 

5.  Fermented (48h)  29.11±0.88 8.72±0.014 59.52±0.433 

6.  Fermented (72h)  23.79±1.01 11.28±0.26 63.61±2.31 

 

Table.2 Qualitative and quantitative phytase assay 
 

Isolate Halozone diameter
a
 Colony diameter

b
 Hydrolysis 

efficiency* 

Quantitative of 

phytase 

AUPPB02 19mm 2mm 89.47% 1.45 ± 0.12 

* Hydrolysis efficiency =  

 

Table.3 Biochemical characterization of isolate 
 

Sl. 

No. 

Biochemical 

test 

Result Sl. 

No. 

Biochemical test 

(Carbohydrate 

utilization) 

Result Sl. 

No. 

Biochemical test 

(Carbohydrate 

utilization) 

Result 

1. Catalase test + 11. D-galactose + 21. D-fructose + 

2. Oxidase test + 12. D-glucose + 22. D-maltose + 

3. Urease - 13. D-lactose + 23. D-sucrose + 

4. Methyl Red test - 14. D-mannose + 24. Inulin + 

5. Voges 

Proskauer test 

+ 15. D-xylose + 25. D-raffinose + 

6. Citrate  + 16. D-ribose + 26. Starch + 

7. H2S - 17. D-mannitol + 27. Glycogen + 

8. Gelatin 

hydrolysis 

+ 18. D- cellobiose +  

9. Nitrate 

reduction 

+ 19. D-arabinose - 

10. Casein 

hydrolysis 

+ 20. Inositol - 

+: positive, -: negative 
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Figure.1 Schematic diagram of isolation, characterization and optimization of phytase producing bacteria. 
 

 
 

Figure.2 Relative % content of PA, Fe and proteins during different processing methods (1- raw, 2- soaking, 

3- germination, 4- fermentation 24 h, 5- fermentation 48 h, 6- fermentation 72 h). 
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Figure.3 (a) Bacterial isolates (b) appearance of halozone on PSM. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4 Bacillus amyloliquefaciens AUPPB02 16S ribosomal RNA gene, partial sequence. 
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Figure.5 Phylogenetic tree showing genetic relationship of B. amyloliquefaciens with taxonomically similar 

strain, species and genus based on 16S rRNA gene sequences. Gene bank accession number of each isolate is 

given in parentheses. Bootstrap values based on 1000 replicates are shown next to the branches phylogenetic 

tree. 
 

 Bacillus amyloliquefaciens strain NBRC 15535(2)

 Bacillus amyloliquefaciens strain MPA 1034

 Bacillus amyloliquefaciens strain NBRC 15535
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 Bacillus nakamurai strain NRRL B-41091

 Bacillus vallismortis strain DSM 11031

 Bacillus vallismortis strain NBRC 101236

 Bacillus amyloliquefaciens AUPPB 02
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 Bacillus velezensis strain CBMB205
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80

59

48

84

35

71
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Figure.6 Effect of incubation period on phytase production from B. amyloliquefaciens AUPPB02 

(OR187307). Bars represent mean ± SE (n=3). 
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Figure.7 Effect of temperature on phytase production from B. amyloliquefaciens AUPPB02 (OR187307). 

Bars represent mean ± SE (n=3). 
 

 
 

Figure.8 Effect of pH on phytase production from B. amyloliquefaciens AUPPB02 (OR187307). Bars 

represent mean ± SE (n=3). 
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Figure.9 Effect of inoculum density on phytase production from B. amyloliquefaciens AUPPB02 

(OR187307). Bars represent mean ± SE (n=3). 
 

 
 

Figure.10 Effect of various carbon source on phytase production from B. amyloliquefaciens AUPPB02 

(OR187307). Bars represent mean ± SE (n=3). 
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Figure.11 Effect of lactose concentration on phytase production from B. amyloliquefaciens AUPPB02 

(OR187307). Bars represent mean ± SE (n=3). 
 

 
 

Figure.12 Effect of various nitrogen source on phytase production from B. amyloliquefaciens AUPPB02 

(OR187307). Bars represent mean ± SE (n=3). 
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Figure.13 Effect of peptone concentration on phytase production from B. amyloliquefaciens AUPPB02 

(OR187307). Bars represent mean ± SE (n=3). 
 

 
 

Various N sources, such as urea, peptone, yeast extract, 

malt extract, sodium nitrite and beef extract were studied 

for phytase production, by replacing ammonium nitrite in 

media (Fig.12). Maximum phytase was produced by 

using peptone (1.6 ± 0.47 U/ml), followed by sodium 

nitrite (1.54 ± 0.01 U/ml), beef extract (0.95 ± 0.07 

U/ml), malt extract (0.78 ± 0.31 U/ml), urea (0.4 ± 0.04 

U/ml) and yeast extract (0.32 ± 0.02 U/ml). 

 

Such result was also supported by many early 

researchers, who considered the organic form of N, as 

best source for maximum phytase production in many 

bacterial forms, and among them, Sharma et al., (2019) 

also found peptone as the best N supporter for phytase 

production in Lactobacillus paracasei SMVDUDB1.  

 

In other work by Singh et al., (2013) yeast extract was 

found as best source of N for B. subtilis DR6. In our 

study also B. amyloliquifaciens utilised the yeast extract 

as N source for phytase production at the rate of 0.32 ± 

0.02 U/ml, but of course, at a lesser rate. 

 

The concentration of N source in media was also 

optimised by taking 0.25%, 0.5%, 1% and 1.5% of 

peptone, in which the isolate shows maximum phytase 

production (1.60 U/ml). With gradual increase of N 

source in media from 0.25% to 1% of peptone, there was 

increment in phytase production, but when its level goes 

to 1.5% there was decrement in phytase as well as in 

bacterial population (Fig. 13). Hence, 1 % of peptone 

was observed as best concentration of N source for 

optimum level of phytase production (1.62 U/ml). 

 

In conclusion, the present study revealed that lentil has 

significant amount of Fe, protein and antinutrient PA, 

where PA reduces the bioavailability of nutrients to the 

human body. Through our study, it was inferred that 

fermentation is the best method of wet processing, 

followed by germination and soaking, through which PA 

is reduced and simultaneously there is increase in Fe and 

protein contents. The isolated strain Bacillus 

amyloliquefaciens AUPPB02 (OR187307) was optimized 

for phytase production. The optimized conditions for 

phytase production in production media were 48h of 

incubation time, 5.0 pH, 37 °C temperature, 1% 

inoculum size, 1% of lactose as carbon and 1% of 

peptone as nitrogen sources. There was 21.33% enhanced 

phytase production in optimised media (1.76 ± 0.10 

U/ml) than pre-optimised media (1.45 ± 0.12 U/ml). The 

enzyme phytase contributes towards break down of PA 

into myo-inositol and phosphorous, along with other 

divalent chelated ions, thus its bioavailability increases. 

Microbial phytases have been applied mainly to animal 

and human food stuff in order to improve mineral 

bioavailability and food processing. The use of microbial 

phytase can be an innovative approach that orchestrate 
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the path of food safety, through balancing antinutritional 

factors.  
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